Abstract

Abstract The western Tianshan range is a major Cenozoic orogenic belt in central Asia exposing predominantly Paleozoic rocks including granite. Ongoing deformation is reflected by very rugged topography with peaks over 7000 m high. Active tectonic deformation is tied to an E–W trending fracture and fault system that sections the mountain chain into geologically diverse blocks that extend parallel to the orogen. In the Muzhaerte valley upwelling hot water follows such a fault system in the Muza granite. About 20 L min−1 Na–SO4–Cl water with a temperature of 55 °C having a total mineralization of about 1 g L−1 discharge from the hot spring. The water is used in a local spa that is frequented by the people of the upper Ili river area. Its waters are used for balneological purposes and the spa serves as a therapeutic institution. The major element composition of the hot water is dominated by Na and by SO4 and Cl, Ca is a minor component. Dissolved silica (1.04 mmol L−1) corresponds to a quartz-saturation temperature of 116 °C and a corresponding depth of the source of the water of about 4600 m. This temperature is consistent with Na/K and Na/Li geothermometry. The water is saturated with respect to fluorite and contains 7.5 mg L−1 F− as a consequence of the low Ca-concentration. The water is undersaturated with respect to the primary minerals of the reservoir granite at reservoir temperature causing continued irreversible dissolution of granite. The waters are oversaturated with respect to Ca–zeolite minerals (such as stilbite and mesolite), and it is expected that zeolites precipitate in the fracture pore space and in alteration zones replacing primary granite. The stable isotope composition of O and H supports a meteoric origin of the water. The Cl/Br mass ratio of 1500 suggests that the salinity results from halite dissolution. Salts leached from powders of Muza granite show the same Cl/Br signature as the hot spring water. Sodium chloride is stored in fluid and solid inclusions in the granite, which have been introduced to quartz by ductile shearing and faulting related to ongoing orogenesis. The hot water remobilizes the salt that is continuously liberated by the tectonic deformation. Water–granite interaction contributes a thenardite-component (Na2SO4) to the major element composition by albite dissolution in H2SO4. The water–rock interaction along faults and fractures transforms and alters Muza granite to a low-temperature epigranite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call