Abstract

BackgroundHigh androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality. Furthermore, activations of the AR, PI3K, mTOR, NFκB and Hedgehog (Hh) signaling pathways are involved in the fatal development of castration-resistant prostate cancer during androgen ablation therapy. MID1, a negative regulator of the tumor-suppressor PP2A, is known to promote PI3K, mTOR, NFκB and Hh signaling. Here we investigate the interaction of MID1 and AR.MethodsAR and MID1 mRNA and protein levels were measured by qPCR, Western blot and immunohistochemistry. Co-immunoprecipitation followed by PCR and RNA-pull-down followed by Western blot was used to investigate protein-mRNA interaction, chromatin-immunoprecipitation followed by next-generation sequencing for identification of AR chromatin binding sites. AR transcriptional activity and activity of promoter binding sites for AR were analyzed by reporter gene assays. For knockdown or overexpression of proteins of interest prostate cancer cells were transfected with siRNA or expression plasmids, respectively.ResultsThe microtubule-associated MID1 protein complex associates with AR mRNA via purine-rich trinucleotide repeats, expansions of which are known to correlate with ataxia and cancer. The level of MID1 directly correlates with the AR protein level in PCa cells. Overexpression of MID1 results in a several fold increase in AR protein and activity without major changes in mRNA-levels, whereas siRNA-triggered knockdown of MID1 mRNA reduces AR-protein levels significantly. Upregulation of AR protein by MID1 occurs via increased translation as no major changes in AR protein stability could be observed. AR on the other hand, regulates MID1 via several functional AR binding sites in the MID1 gene, and, in the presence of androgens, exerts a negative feedback loop on MID1 transcription. Thus, androgen withdrawal increases MID1 and concomitantly AR-protein levels. In line with this, MID1 is significantly over-expressed in PCa in a stage-dependent manner.ConclusionPromotion of AR, in addition to enhancement of the Akt-, NFκB-, and Hh-pathways by sustained MID1-upregulation during androgen deprivation therapy provides a powerful proliferative scenario for PCa progression into castration resistance. Thus MID1 represents a novel, multi-faceted player in PCa and a promising target to treat castration resistant prostate cancer.

Highlights

  • High androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality

  • The AR mRNA associates with the MID1 complex Previously, we have shown that the MID1-protein complex binds mRNAs via purine-rich RNA motifs, which form stable secondary structures [16,20] including expanded CAG repeats as seen in mutant huntingtin [18]

  • To corroborate our initial finding of an association of MID1 with the AR mRNA in a screen originally performed in HeLa cells, we first isolated mRNA from HeLa total cell lysate or from co-immunoprecipitates of the MID1 complex using lysates from MID1-FLAG overexpressing HeLa cells

Read more

Summary

Introduction

High androgen receptor (AR) level in primary tumour predicts increased prostate cancer (PCa)-specific mortality. Activations of the AR, PI3K, mTOR, NFκB and Hedgehog (Hh) signaling pathways are involved in the fatal development of castration-resistant prostate cancer during androgen ablation therapy. MID1, a negative regulator of the tumor-suppressor PP2A, is known to promote PI3K, mTOR, NFκB and Hh signaling. The androgen receptor (AR) is the key transcription factor regulating androgen-dependent gene expression and is critical for the development and maintenance of male sexual organs like the prostate. Prostate cancer (PCa) is the most common malignancy diagnosed in male humans and the second leading cause of male cancer deaths in Western countries [2]. The two most frequent aberrantly activated signaling pathways found in prostate cancer are controlled by the AR and PI3K [3]. It is up-regulated in late disease stages by gene amplification and other, non-genomic mechanisms [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call