Abstract

In this paper we study energy conservation in the Internet. We observe that different traffic volumes on a link can result in different energy consumption; this is mainly due to such technologies as trunking (IEEE 802.1AX), adaptive link rates, etc. We design a green Internet routing scheme, where the routing can lead traffic in a way that is green. We differ from previous studies where they switch network components, such as line cards and routers, into sleep mode. We do not prune the Internet topology. We first develop a power model, and validate it using real commercial routers. Instead of developing a centralized optimization algorithm, which requires additional protocols such as MPLS to materialize in the Internet, we choose a hop-by-hop approach. It is thus much easier to integrate our scheme into the current Internet. We progressively develop three algorithms, which are loop-free, substantially reduce energy consumption, and jointly consider green and QoS requirements such as path stretch. We further analyze the power saving ratio, the routing dynamics, and the relationship between hop-by-hop green routing and QoS requirements. We comprehensively evaluate our algorithms through simulations on synthetic, measured, and real topologies, with synthetic and real traffic traces. We show that the power saving in the line cards can be as much as 50 percent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.