Abstract

A cost-effective approach to obtain electrode materials with excellent electrochemical performance is critical to the development of supercapacitors (SCs). Here we report the preparation of a three-dimensional (3D) honeycomb-like porous carbon (HLPC) by the simple carbonization of pomelo peel followed by KOH activation. Structural characterization indicates that the as-prepared HLPC with a high specific surface area (SSA) up to 2725 m(2) g(-1) is made up of interconnected microporous carbon walls. Chemical analysis shows that the HLPC is doped with nitrogen and also has oxygen-containing groups. Electrochemical measurements show that the HLPC not only exhibits a high specific capacitance of 342 F g(-1) and 171 F cm(-3) at 0.2 A g(-1) but also shows considerable rate capability with a retention of 62% at 20 A g(-1) as well as good cycling performance with 98% retention over 1000 cycles at 10 A g(-1) in 6 M KOH. Furthermore, an as-fabricated HLPC-based symmetric SC device delivers a maximum energy density of ∼9.4 Wh kg(-1) in the KOH electrolyte. Moreover, the outstanding cycling stability (only 2% capacitance decay over 1000 cycles at 5 A g(-1)) of the SC device makes it promising for use in a high-performance electrochemical energy system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.