Abstract

Cluster analysis, which is the subject of active research in several fields, such as statistics, pattern recognition, machine learning, and data mining, is to partition a given set of data or objects into clusters. K-means is used as a popular clustering method due to its simplicity and high speed in clustering large datasets. However, K-means has two shortcomings. First, dependency on the initial state and convergence to local optima. The second is that global solutions of large problems cannot be found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. Over the last decade, modeling the behavior of social insects, such as ants and bees, for the purpose of search and problem solving has been the context of the emerging area of swarm intelligence. Honeybees are among the most closely studied social insects. Honeybee mating may also be considered as a typical swarm-based approach to optimization, in which the search algorithm is inspired by the process of marriage in real honeybee. Neural networks algorithms are useful for clustering analysis in data mining. This study proposes a two-stage method, which first uses self-organizing feature maps (SOM) neural network to determine the number of clusters and then uses honeybee mating optimization algorithm based on K-means algorithm to find the final solution. We compared proposed algorithm with other heuristic algorithms in clustering, such as GA, SA, TS, and ACO, by implementing them on several well-known datasets. Our finding shows that the proposed algorithm works better than others. In order to further demonstration of the proposed approach’s capability, a real-world problem of an Internet bookstore market segmentation based on customer loyalty is employed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.