Abstract

Insect hexamerins have long been known as storage proteins that are massively synthesized by the larval fat body and secreted into hemolymph. Following the larval-to-pupal molt, hexamerins are sequestered by the fat body via receptor-mediated endocytosis, broken up, and used as amino acid resources for metamorphosis. In the honey bee, the transcript and protein subunit of a hexamerin, HEX 70a, were also detected in ovaries and testes. Aiming to identify the subcellular localization of HEX 70a in the female and male gonads, we used a specific antibody in whole mount preparations of ovaries and testes for analysis by confocal laser-scanning microscopy. Intranuclear HEX 70a foci were evidenced in germ and somatic cells of ovarioles and testioles of pharate-adult workers and drones, suggesting a regulatory or structural role. Following injection of the thymidine analog EdU we observed co-labeling with HEX 70a in ovariole cell nuclei, inferring possible HEX 70a involvement in cell proliferation. Further support to this hypothesis came from an injection of anti-HEX 70a into newly ecdysed queen pupae where it had a negative effect on ovariole thickening. HEX 70a foci were also detected in ovarioles of egg laying queens, particularly in the nuclei of the highly polyploid nurse cells and in proliferating follicle cells. Additional roles for this storage protein are indicated by the detection of nuclear HEX 70a foci in post-meiotic spermatids and spermatozoa. Taken together, these results imply undescribed roles for HEX 70a in the developing gonads of the honey bee and raise the possibility that other hexamerins may also have tissue specific functions.

Highlights

  • The larvae of holometabolous insects accumulate a large quantity of proteins, carbohydrates and lipids which serve as energy and structural compounds for sustaining metamorphosis up to the adult stage [1]

  • Following cessation of larval feeding in preparation to the larval-to-pupal molt, these proteins are sequestered from hemolymph by the fat body cells, via endocytosis mediated by membrane receptors [3], and stored in the cytoplasm in the form of granules [4]

  • In line with the idea that the sole function of most hexamerins is to act as amino acid reserves when feeding is no longer occurring, as during the pupal and pharate-adult stages, Roberts and Brock (1981) [5] considered that hexamerins are the essential proteins for metamorphosis, as vitellogenins are to embryogenesis

Read more

Summary

Introduction

The larvae of holometabolous insects accumulate a large quantity of proteins, carbohydrates and lipids which serve as energy and structural compounds for sustaining metamorphosis up to the adult stage [1]. Following cessation of larval feeding in preparation to the larval-to-pupal molt, these proteins are sequestered from hemolymph by the fat body cells, via endocytosis mediated by membrane receptors [3], and stored in the cytoplasm in the form of granules [4]. As such, they can be processed and used as amino acid source for development completion. In line with the idea that the sole function of most hexamerins is to act as amino acid reserves when feeding is no longer occurring, as during the pupal and pharate-adult stages, Roberts and Brock (1981) [5] considered that hexamerins are the essential proteins for metamorphosis, as vitellogenins are to embryogenesis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call