Abstract

Acyl-CoA synthetase (ACS) functions as a hub linking lipid metabolism with in cellular physiologies by producing active intermediate of catalyzes acyl-CoA. However, the biological roles of ACS are largely unknown in filamentous fungi. In this study, an ortholog of yeast Faa1, named BbFaa1, was functionally characterized in the filamentous entomopathogenic fungus Beauveria bassiana. BbFaa1 was associated with vesicular membrane, and its loss resulted in the impaired cytomembrane integrity. Notably, in ΔBbfaa1 mutant strain, the translocation of hydrophobins across cell membrane was significantly hampered, which resulted in the reduced hydrophobicity of aerial mycelia and conidia. In addition, loss of BbFaa1 significantly weakened fungal virulence. Our findings indicate that the metabolism of acyl-CoA synthetase Faa1 contributes to the cytomembrane functionality which cascades hydrophobin translocation and differentiation, thus affecting virulence of B. bassiana.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.