Abstract

A strain of Vibrio cholerae, which had been engineered to express high levels of the non-toxic B subunit (EtxB) of Escherichia coli heat-labile enterotoxin, was subjected to transposon (TnphoA) mutagenesis. Two chromosomal TnphoA insertion mutations of the strain were isolated that showed a severe defect in the amount of EtxB produced. The loci disrupted by TnphoA in the two mutant derivatives were cloned and sequenced, and this revealed that the transposon had inserted at different sites in the same gene. The open reading frame of the gene predicts a 200-amino-acid exported protein, with a Cys-X-X-Cys motif characteristic of thioredoxin, protein disulphide isomerase, and DsbA (a periplasmic protein required for disulphide bond formation in E. coli). The V. cholerae protein exhibited 40% identity with the DsbA protein of E. coli, including 90% identity in the region of the active-site motif. Introduction of a plasmid encoding E. coli DsbA into the V. cholerae TnphoA derivatives was found to restore enterotoxin formation, whilst expression of Etx or EtxB in a dsbA mutant of E. coli confirmed that DsbA is required for enterotoxin formation in E. coli. These results suggest that, since each EtxB subunit contains a single intramolecular disulphide bond, a transient intermolecular interaction with DsbA occurs during toxin subunit folding which catalyses formation of the disulphide in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.