Abstract

We present and study a homographic best approximation problem, which arises in the analysis of waveform relaxation algorithms with optimized transmission conditions. Its solution characterizes in each class of transmission conditions the one with the best performance of the associated waveform relaxation algorithm. We present the particular class of first order transmission conditions in detail and show that the new waveform relaxation algorithms are well posed and converge much faster than the classical one: the number of iterations to reach a certain accuracy can be orders of magnitudes smaller. We illustrate our analysis with numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.