Abstract

The paper presents a procedure for the numerical evaluation of the mechanical properties of woven fabric laminates. Woven fabrics usually present orthogonal interlaced yarns (warp and weft) and distribution of the fibers in the yarns and of the yarns in the composite may be considered regular. This allows us to apply the homogenization theory for periodic media both to the yarn and to the fabric. Three-dimensional finite element models are used in two steps to predict both the stiffness and the strength of woven fabric laminates. The model includes all the important parameters that influence the mechanical behavior: the lamina thickness, the yarn orientation, the fiber volume fraction and the mechanical characteristics of the components. The capabilities of the numerical model were verified studying the elastic behavior of a woven fabric laminate available in the literature and the ultimate strength of a glass fabric laminate experimentally investigated. The procedure, that can be implemented into commercial finite element codes, appears to be an efficient tool for the design of textile composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call