Abstract

SUMMARYThe macroscopic linear elastic behaviour of inclusion‐reinforced soils, regarded as periodic composite media, is investigated by means of the homogenization theory. Special attention is given here to the determination of their longitudinal shear stiffness properties, which strongly govern the reinforced ground response under lateral loading. Combining the use of analytical, variational and numerical methods, we thoroughly examined three particular engineering‐relevant configurations: single trench, column and cross trench reinforcements. Fairly accurate closed‐form expressions are thus obtained, giving the value of the reinforced soil longitudinal shear stiffness as a function of the individual components shear moduli and reinforcement volume fraction. It is shown in particular that adopting a cross trench reinforcement layout instead of the classical column configuration results in a much higher improvement of the longitudinal shear stiffness. The results are then applied to assessing the reduction of soil liquefaction risk, which can be attributed to the presence of the reinforcing inclusions. Again, they clearly demonstrate the excellent performance of the cross trench configuration as compared with the complete inefficiency of the column reinforcement technique. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.