Abstract
Using the orbital-free density functional theory as a model theory, we present an analysis of the field theoretic approach to quasi-continuum method. In particular, by perturbation method and multiple scale analysis, we provide a formal justification for the validity of numerical coarse-graining of various fields in the quasi-continuum reduction of field theories by taking the homogenization limit. Further, we derive the homogenized equations that govern the behavior of electronic fields in regions of smooth deformations. Using Fourier analysis, we determine the far-field solutions for these fields in the presence of local defects, and subsequently estimate cell-size effects in computed defect energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.