Abstract
The homogeneous time-resolved fluorescence (HTRF ®) technology is an assay developed to study the interaction between biomolecules. This detection system is based on a fluorescence resonance energy transfer (FRET) between a Tris-bipyridine europium cryptate used as a long-lived fluorescent donor and a chemically modified allophycocyanine as acceptor. This technology is characterized by both a spectral selectivity and a temporal selectivity (due to the time-resolved mode), ensuring a highly specific signal. Here a europium-cryptate-labeled deoxyuridine triphosphate analogue (K-11-dUTP) was used to monitor the extension reaction on a biotinylated oligonucleotide used as substrate for telomerase in a telomeric repeat amplification protocol (TRAP). After the addition of an allophycocyanine–streptavidin conjugate, the extension products give rise to a FRET between the incorporated cryptate moieties and the allophycocyanine acceptor that then displays a specific long-lived emission. The TRAP-HTRF format was validated as a screening tool by using a 2,6-diaminoanthraquinone analogue, a known inhibitor of telomerase activity. The IC 50 measured was consistent with the reported values, showing the convenience of the HTRF ® technology for the study of telomerase activity and inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.