Abstract

Two more or less standard methods exist for the systematic, logical construction of classical mathematics, the so-called theory of types, due in the main to Russell, and the Zermelo axiomatic set theory. In systems based upon either of these, the connective of membership, “ε”, plays a fundamental role. Usually although not always it figures as a primitive or undefined symbol.Following the familiar simplification of Russell's theory, let us mean by a logical type in the strict sense any one of the following: (i) the totality consisting exclusively of individuals, (ii) the totality consisting exclusively of classes whose members are exclusively individuals, (iii) the totality consisting exclusively of classes whose members are exclusively classes whose members in turn are exclusively individuals, and so on. Any entity from (ii) is said to be one type higher than any entity from (i), any entity from (iii), one type higher than any entity from (ii), and so on. In systems based upon this simplified theory of types, the only significant atomic formulae involving “ε” are those asserting the membership of an entity in an entity one type higher. Thus any expression of the form “(x∈y)” is meaningless except where “y” denotes an entity of just one type higher than the type of the entity denoted by “x” It is by means of general type restrictions of this kind that the Russell and other paradoxes are avoided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call