Abstract
A polysaccharide, PGA4-3b, with an average molecular weight of 8.9kDa estimated by high-performance gel-permeation chromatography (HPGPC), was isolated from radix of Platycodon grandiflorum (Jacq.) A. DC. Using monosaccharide analysis, methylation analysis and NMR spectroscopy, PGA4-3b was elucidated to be a linear poly-(1→4)-α-d-galactopyranosyluronic acid that contains no methyl ester groups. Partial acid hydrolysis of PGA4-3b yielded a series of poly- or oligogalacturonic acids with different degrees of polymerization (DP), that is, 4-3bde, 4-3bde-O-1, 4-3bde-O-2, 4-3bde-O-3, and 4-3bde-O-4. Cell tube formation inhibition tests with human microvascular endothelial cells (HMEC) for antiangiogenesis analysis showed that 4-3bde-O-1 and 4-3bde-O-2, the fractions with higher molecular weights, could inhibit tube formation, while the native PGA4-3b and low molecular weight fraction 4-3bde-O-3 and 4-3bde-O4 are ineffective. Moreover, 4-3bde-O-2 with DP 5-10 impaired cell tube formation in a dose-dependent way, suggesting its potential to be developed as an anti-angiogenesis drug. This is the first time oligogalacturonic acids are reported to show an anti-angiogenesis effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.