Abstract
Aqueous rechargeable zinc-manganese dioxide (Zn-MnO2) batteries are considered as one of the most promising energy storage devices for large scale-energy storage systems due to their low cost, high safety, and environmental friendliness. However, only a few cathode materials have been demonstrated to achieve stable cycling for aqueous rechargeable Zn-MnO2 batteries. Here, we report a new material consisting of hollow MnO2 nanospheres, which can be used for aqueous Zn-MnO2 batteries. The hollow MnO2 nanospheres can achieve high specific capacity up to ~405 mAh g−1 at 0.5 C. More importantly, the hollow structure of birnessite-type MnO2 enables long-term cycling stability for the aqueous Zn-MnO2 batteries. The excellent performance of the hollow MnO2 nanospheres should be due to their unique structural properties that enable the easy intercalation of zinc ions.
Highlights
Lithium-ion batteries (LIBs) have predominantly held a significant share of the energy storage market for portable electronics and electric vehicles since the 1990s, due to their high energy/power density and long cycling life
Among the multivalent batteries based on intercalation chemistries, aqueous rechargeable zinc ion batteries are considered as a promising candidate for large-scale energy storage applications because of their low cost and the large abundance of Zn [3]
The aqueous electrolytes in zinc ion batteries provide better safety compared to other battery systems with flammable organic electrolytes
Summary
Lithium-ion batteries (LIBs) have predominantly held a significant share of the energy storage market for portable electronics and electric vehicles since the 1990s, due to their high energy/power density and long cycling life. Among the multivalent batteries based on intercalation chemistries, aqueous rechargeable zinc ion batteries are considered as a promising candidate for large-scale energy storage applications because of their low cost and the large abundance of Zn [3]. A few positive electrodes coupled with suitable electrolytes have been demonstrated to be able to achieve stable long-term cycling for aqueous zinc ion batteries [7,8,9,10,11,12] Despite their low cost and high abundance, manganese oxides have a variety of advantages including tunable crystal structure and a scalable manufacturing process, which have been widely used for many energy storage applications including lithium-ion batteries, supercapacitors, and zinc-air batteries [13,14,15]. The hollow manganese oxide cathode exhibits high capacity and stable cycling performance with an aqueous electrolyte
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.