Abstract

Four-arm Holliday structures are ephemeral intermediates in genetic recombination. We have used an oligodeoxynucleotide system to form immobile DNA junctions, which are stable analogs of Holliday structures. We have probed the equilibrium structure of a junction by means of hydroxyl radicals generated by the reaction of iron(II)EDTA with hydrogen peroxide. The hydroxyl radical cleavage pattern shows twofold symmetry throughout the molecule. Strong protection from hydroxyl radical attack is evident on two strands near the branch site, and weaker protection may be seen four or five residues 3' to the branch site on the other two strands. No other position appears significantly distinct from double-helical DNA controls. From these data, we conclude that the Holliday junction is a twofold symmetric complex whose four arms form two stacking domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.