Abstract

Recruited macrophages in inflammation attract various ligand-receptor drug delivery approaches. Galactose bound nanocarriers are promising to catch macrophages because of surface-expressed macrophage galactose type-lectin-C (MGL-2) receptor. The present study reported fabrication of galactose conjugated PLGA (GAL-PLGA) polymer and nanoparticles under quality by design (QBD) approach to investigate macrophages targeting potential at inflamed intestine. GAL-PLGA nanoparticles were fabricated through O/W emulsion-evaporation method under QBD approach and Box-Behnken design. Obtained GAL-PLGA nanoparticles have optimum particle size (~118 nm), drug entrapment (87%) and zeta potential (−9.5). TGA, XPRD and FTIR confirmed stability and negate drug-polymer interactions. Further, nanoparticles have considerable hemocompatibility, biocompatibility and cellular uptake; macrophage uptake was inhibited by D-galactose confirming involvement of MGL-2. Moreover, drug retention studies in the DSS-colitis model provide background for potential of nanoparticles to target and reside inflamed intestine. It is concluded that GAL-PLGA nanoparticles are suitable platform to target macrophages at the inflamed intestine through oral route.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call