Abstract
Experimental wear testing is an essential step in the evaluation of total knee replacement (TKR) design. Unfortunately, experiments can be prohibitively expensive and time consuming, which has made computational wear simulation a more desirable alternative for screening designs. While previous attempts have demonstrated positive results, few models have fully incorporated the affect of strain hardening (or cross shear), or tested the model under more than one loading condition. The objective of this study was to develop and evaluate the performance of a new holistic TKR damage model, capable of predicting damage caused by wear, including the effects of strain hardening and creep. For the first time, a frictional work-based damage model was compared against multiple sets of experimental TKR wear testing data using different input kinematics. The wear model was tuned using experimental measurements and was then able to accurately predict the volumetric polyethylene wear volume during experiments with different kinematic inputs. The size and shape of the damage patch on the surface of the polyethylene inserts were also accurately predicted under multiple input kinematics. The ability of this model to predict implant damage under multiple loading profiles by accounting for strain hardening makes it ideal for screening new implant designs, since implant kinematics are largely a function of the shape of the components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.