Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are a contaminant of emerging interest, often used in the medical field as an imaging contrast agent, with additional uses in wastewater treatment and as food additives. Although the use of SPIONs is increasing, little research has been conducted on the toxic impacts to living organisms beyond traditional lethal concentration endpoints. Daphnia magna are model organisms for aquatic toxicity testing with a well understood metabolome and high sensitivity to SPIONs. Thus, as environmental concentrations continue to increase, it is becoming critical to understand their sub-lethal toxicity. Due to the paramagnetic nature of SPIONs, a range of potential nuclear magnetic resonance spectroscopy (NMR) experiments are possible, offering the potential to probe the physical location (via imaging), binding (via relaxation weighted spectroscopy), and the biochemical pathways impacted (via in vivo metabolomics). Results indicate binding to carbohydrates, likely chitin in the exoskeleton, along with a decrease in energy metabolites and specific biomarkers of oxidative stress. The holistic NMR framework used here helps provide a more comprehensive understanding of SPIONs impacts on D. magna and showcases NMR's versatility in providing physical, chemical, and biochemical insights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.