Abstract
In the last few years, machine learning techniques have been successfully applied to solve engineering problems. However, owing to certain complexities found in real-world problems, such as class imbalance, classical learning algorithms may not reach a prescribed performance. There can be situations where a good result on different conflicting objectives is desirable, such as true positive and true negative ratios, or it is important to balance model’s complexity and prediction score. To solve such issues, the application of multi-objective optimization design procedures can be used to analyze various trade-offs and build more robust machine learning models. Thus, the creation of ensembles of predictive models using such procedures is addressed in this work. First, a set of diverse predictive models is built by employing a multi-objective evolutionary algorithm. Next, a second multi-objective optimization step selects the previous models as ensemble members, resulting on several non-dominated solutions. A final multi-criteria decision making stage is applied to rank and visualize the resulting ensembles. To analyze the proposed methodology, two different experiments are conducted for binary classification. The first case study is a famous classification problem through which the proposed procedure is illustrated. The second one is a challenging real-world problem related to water quality monitoring, where the proposed procedure is compared to four classical ensemble learning algorithms. Results on this second experiment show that the proposed technique is able to create robust ensembles that can outperform other ensemble methods. Overall, the authors conclude that the proposed methodology for ensemble generation creates competitive models for real-world engineering problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.