Abstract

Small-bore piping and instrument tubing vibration failures are not just a hidden risk to production, reliability, and safety, but also a frequent source of emissions through leaks and plant flaring when issues arise. Vibration-induced failure risks are often overlooked and detected too late, despite making up a significant portion of leaks and lost production incidents. Conventional approaches to managing these hidden risks have resulted in recurring failures and unplanned downtime at process plants. Large inventories of Small-Bore Fittings (SBFs) and tubing generally require management as most are integral parts of the plant and can be classed as safety and/or production critical. Small-bore tubing assemblies are at risk of fatigue failure due to a general lack of awareness of the best-practice design for reducing vibration response and how to manage this risk. A holistic approach to manage and pro-actively reduce small-bore piping and tubing vibration anomalies in the field is presented in this paper. This involves a risk-based assessment approach combined with the use of digital tools to register, manage, and visualise the status of the risk to the plant and the improvement in risk with the implementation of remedial actions. Best-practice and a short case study is discussed to demonstrate how the approach can be implemented to effectively reduce and manage vibration-induced small-bore piping and tubing failure incidents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call