Abstract

We have determined whether the anti-atherosclerotic effect of a 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitor (fluvastatin) is mediated through nitric oxide (NO) as well as affecting plasma lipids. NO related vascular responses, endothelial nitric oxide synthase (eNOS) mRNA and superoxide anion (O 2 −) release were examined in vascular walls of oophorectomized female rabbits fed 0.5% cholesterol chow for 12 weeks with or without fluvastatin (2 mg/kg per day). Serum lipid profile was not different between two groups. NO dependent responses stimulated by acetylcholine and calcium ionophore A23187 and tone related basal NO response induced by N G-monomethyl- l-arginine acetate ( l-NMA); nitric oxide synthase inhibitor were all improved by fluvastatin treatment. Endothelium independent vasorelaxation induced by nitroglycerin was not different between the two groups of rabbits’ arteries. Fluvastatin treatment increased cyclic GMP concentration in aorta of rabbits. eNOS mRNA expression and O 2 − release were measured in aorta using competitive reverse transcription-polymerase chain reaction (RT-PCR) and with lucigenin analogue, 2-methyl-3,7-dihydroimidazol [1,2-a]pyrazine-3-one (MCLA) chemiluminescence methods. eNOS mRNA in the endothelial cells of aorta was significantly up-regulated and O 2 − production was significantly reduced in fluvastatin treated rabbit aorta. Anti-macrophage staining area, but not anti-smooth muscle cell derived actin stained area in the aorta was also reduced by fluvastatin treatment. Conclusion, fluvastatin, a HMG-CoA reductase inhibitor, retards the initiation of atherosclerosis formation through the improvement of NO bioavailability by both up-regulation of eNOS mRNA and decrease of O 2 − production in vascular endothelial cells, and this means that part of the anti-atherosclerotic effect of fluvastatin may be due to nonlipid factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.