Abstract
Erasure codes such as Reed-Solomon (RS) codes are being extensively deployed in data centers since they offer significantly higher reliability than data replication methods at much lower storage overheads. These codes however mandate much higher resources with respect to network bandwidth and disk IO during reconstruction of data that is missing or otherwise unavailable. Existing solutions to this problem either demand additional storage space or severely limit the choice of the system parameters. In this paper, we present "Hitchhiker", a new erasure-coded storage system that reduces both network traffic and disk IO by around 25% to 45% during reconstruction of missing or otherwise unavailable data, with no additional storage, the same fault tolerance, and arbitrary flexibility in the choice of parameters, as compared to RS-based systems. Hitchhiker 'rides' on top of RS codes, and is based on novel encoding and decoding techniques that will be presented in this paper. We have implemented Hitchhiker in the Hadoop Distributed File System (HDFS). When evaluating various metrics on the data-warehouse cluster in production at Facebook with real-time traffic and workloads, during reconstruction, we observe a 36% reduction in the computation time and a 32% reduction in the data read time, in addition to the 35% reduction in network traffic and disk IO. Hitchhiker can thus reduce the latency of degraded reads and perform faster recovery from failed or decommissioned machines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.