Abstract

Targeted mutagenesis in model organisms is key for gene functional annotation and biomedical research. Despite technological advances in gene editing by the CRISPR-Cas9 systems, rapid and efficient introduction of site-directed mutations remains a challenge in large animal models. Here, we developed a robust and flexible insertional mutagenesis strategy, homology-independent targeted trapping (HIT-trapping), which is generic and can efficiently target-trap an endogenous gene of interest independent of homology arm and embryonic stem cells. Further optimization and equipping the HIT-trap donor with a site-specific DNA inversion mechanism enabled one-step generation of reversible and conditional alleles in a single experiment. As a proof of concept, we successfully created mutant alleles for 21 disease-related genes in primary porcine fibroblasts with an average knock-in frequency of 53.2%, a great improvement over previous approaches. The versatile HIT-trapping strategy presented here is expected to simplify the targeted generation of mutant alleles and facilitate large-scale mutagenesis in large mammals such as pigs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call