Abstract

It is not widely realised that the first paper on cepstrum analysis was published two years before the FFT algorithm, despite having Tukey as a common author, and its definition was such that it was not reversible even to the log spectrum. After publication of the FFT in 1965, the cepstrum was redefined so as to be reversible to the log spectrum, and shortly afterwards Oppenheim and Schafer defined the “complex cepstrum”, which was reversible to the time domain. They also derived the analytical form of the complex cepstrum of a transfer function in terms of its poles and zeros. The cepstrum had been used in speech analysis for determining voice pitch (by accurately measuring the harmonic spacing), but also for separating the formants (transfer function of the vocal tract) from voiced and unvoiced sources, and this led quite early to similar applications in mechanics. The first was to gear diagnostics (Randall), where the cepstrum greatly simplified the interpretation of the sideband families associated with local faults in gears, and the second was to extraction of diesel engine cylinder pressure signals from acoustic response measurements (Lyon and Ordubadi). Later Polydoros defined the differential cepstrum, which had an analytical form similar to the impulse response function, and Gao and Randall used this and the complex cepstrum in the application of cepstrum analysis to modal analysis of mechanical structures. Antoni proposed the mean differential cepstrum, which gave a smoothed result. The cepstrum can be applied to MIMO systems if at least one SIMO response can be separated, and a number of blind source separation techniques have been proposed for this. Most recently it has been shown that even though it is not possible to apply the complex cepstrum to stationary signals, it is possible to use the real cepstrum to edit their (log) amplitude spectrum, and combine this with the original phase to obtain edited time signals. This has already been used for a wide range of mechanical applications. A very powerful processing tool is an exponential “lifter” (window) applied to the cepstrum, which is shown to extract the modal part of the response (with a small extra damping of each mode corresponding to the window). This can then be used to repress or enhance the modal information in the response according to the application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.