Abstract

Boron neutron capture therapy (BNCT) is a form of radiation therapy mediated by the short-range (less than 10 microns) energetic alpha (4He) and lithium-7 (7Li) ionizing particles that result from the prompt disintegration by slow neutrons of the stable (nonradioactive) nucleus boron-10 (10B). Recent advances in radiobiological and toxicological evaluation of tumour-affinitive boron-containing drugs and in optimization of the energies of neutrons in the incident beam have spurred interest in BNCT. This article presents a history of BNCT that emphasizes studies in the USA. A new dosimetric analysis of the 1959-1961 clinical trials of BNCT at Brookhaven National Laboratory is also presented. This analysis yields an acute radiation dose tolerance limit estimate of approximately 10 Gy-Eq to the capillary endothelium of human basal ganglia from BNCT. (Gy-Eq: Gray-equivalent, or relative biological effectiveness of a radiation component multiplied by the physical dose of the component (Gy), summed over the component kinds of radiation.)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.