Abstract

Calibration of hydrological time-series models is a challenging task since these models give a wide spectrum of output series and calibration procedures require significant amount of time. From a statistical standpoint, this model parameter estimation problem simplifies to finding an inverse solution of a computer model that generates pre-specified time-series output (i.e., realistic output series). In this paper, we propose a modified history matching approach for calibrating the time-series rainfall-runoff models with respect to the real data collected from the state of Georgia, USA. We present the methodology and illustrate the application of the algorithm by carrying a simulation study and the two case studies. Several goodness-of-fit statistics were calculated to assess the model performance. The results showed that the proposed history matching algorithm led to a significant improvement, of 30% and 14% (in terms of root mean squared error) and 26% and 118% (in terms of peak percent threshold statistics), for the two case-studies with Matlab-Simulink and SWAT models, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call