Abstract
Aspects of our discovery of lateral diffusion of the G protein coupled receptor (GPCR) rhodopsin and that a single activated rhodopsin can non-covalently catalyze GTP binding to thousands of GTPases per second on rod disk membranes via this diffusion are summarized herein. Rapid GTPase coupling to membrane-bound phosphodiesterase (PDE) further amplifies the signal via cGMP hydrolysis, essential to visual transduction. Important generalizations from this work are that biomembranes can uniquely concentrate, orient for reaction and provide a solvent appropriate to rapid, powerful and appropriately controlled sequential interaction of signaling proteins. Of equal importance to function is timely control and termination of such powerful amplification via receptor phosphorylation (quenching) and arrestin binding. Downstream kinetic modulation by GTPase activating proteins (GAPs) and regulators of G protein signaling (RGS) and related mechanisms as well as limitations set by membrane domain fencing, structural protein binding etc. can be essential in relevant systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.