Abstract

The taxonomic status of smooth shelled blue mussels of the genus Mytilus has received considerable attention in the last 25 years. Despite this, the situation in the southern hemisphere remains uncertain and is in need of clarification. Recent work suggests that contemporary New Zealand mussels from two cool/cold temperate locations are M. galloprovincialis. However, the distribution of Mytilus in New Zealand ranges from 35 ° to 52 ° south (∼ 1800 km), meaning that large areas of the subtropical/warm temperate north and the subantarctic south remain unsampled, an important consideration when species of this genus exhibit pronounced macrogeographical differences in their distributions which are associated with environmental variables such as water temperature, salinity, wave action and ice cover. This study employed multivariate morphometric analyses of one fossil, 83 valves from middens, and 92 contemporary valves from sites spanning the distributional range of blue mussels to determine a historical and contemporary perspective of the taxonomic status of Mytilus in New Zealand. The findings indicated that all fossil and midden mussels are best regarded as M. galloprovincialis and confirmed that contemporary mussels, with one possible regional exception, are also best regarded as M. galloprovincialis. Contemporary mussels from the Bay of Islands (warm temperate/subtropical) exhibited much greater affinity to M. edulis than they did to M. galloprovincialis, indicating that mussels from this area require detailed genetic examination to determine their taxonomic status. The analyses revealed a significant difference between the fossil/midden mussels and the contemporary mussels, consistent with levels of present day differentiation among intraspecific populations and not thought to reflect any substantive temporal change between mussels of the two groups. The continuous distribution of M. galloprovincialis in New Zealand from the warm north to the subantarctic south indicates that the physiology of this species is adapted to a wide range of water temperature conditions. Therefore, the distribution of this species on a worldwide scale is unlikely to be restricted by its adaptation to warm water alone, as has previously been widely assumed. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 82, 329–344.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call