Abstract

In this work, the authors reviewed engine, vehicle, and fuel data since 1925 to examine the historical and recent coupling of compression ratio and fuel antiknock properties (i.e., octane number) in the U.S. light-duty vehicle market. The analysis identified historical time frames and trends and illustrated how three factors—consumer preferences, technical capabilities, and regulatory legislation—affect personal mobility. Data showed that over many decades these three factors have a complex and time-sensitive interplay. Long-term trends in the data were identified where interaction and evolution between all three factors were observed. Specifically, transportation efficiency per unit power (gal/ton-mi/hp) was found to be a good metric to integrate technical, societal, and regulatory effects into the evolutional pathway of personal mobility. From this framework, discussions of future evolutionary changes to personal mobility are also presented, with a focus centered on how increasing fuel octane number can help to enable sustained improvement in transportation efficiency per unit power.

Highlights

  • There is little question that during the twentieth century significant gains in personal mobility occurred

  • Note that there are several non-mutually exclusive pathways to increase fuel economy; the present analysis explores fuel economy improvements from the powertrain alone

  • The analysis section described the evolution of personal mobility and the ways that mobility has been influenced by technological, consumer, and regulatory influences

Read more

Summary

Introduction

There is little question that during the twentieth century significant gains in personal mobility occurred. In the United States, these gains most prominently occurred through the widespread deployment of the automobile, which revolutionized society, culture, landscape, and lifestyle. The technical backbone for this large-scale adoption and deployment was the robust, low production, and operating cost gasoline-fueled spark-ignited (SI) internal combustion engine. The concept of internal combustion engines is simple; they convert chemical potential energy to mechanical energy. Note that this process obeys conservation of energy, it does not conserve species or the working fluid and, is not suited to be represented by a heat engine thermodynamic cycle (Foster, 2012). In engine operation, fuel chemical potential is converted to thermal energy, which is converted to mechanical energy through constrained expansion, where the latter portion

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.