Abstract

Deficits in Schwann cell-mediated remyelination impair functional restoration after nerve damage, contributing to peripheral neuropathies. The mechanisms mediating block of remyelination remain elusive. Here, through small-molecule screening focusing on epigenetic modulators, we identified histone deacetylase 3 (HDAC3; a histone-modifying enzyme) as a potent inhibitor of peripheral myelinogenesis. Inhibition of HDAC3 enhanced myelin growth and regeneration and improved functional recovery after peripheral nerve injury in mice. HDAC3 antagonizes the myelinogenic neuregulin-PI3K-AKT signaling axis. Moreover, genome-wide profiling analyses revealed that HDAC3 represses promyelinating programs through epigenetic silencing while coordinating with p300 histone acetyltransferase to activate myelination-inhibitory programs that include the HIPPO signaling effector TEAD4 to inhibit myelin growth. Schwann cell-specific deletion of either Hdac3 or Tead4 in mice resulted in an elevation of myelin thickness in sciatic nerves. Thus, our findings identify the HDAC3-TEAD4 network as a dual-function switch of cell-intrinsic inhibitory machinery that counters myelinogenic signals and maintains peripheral myelin homeostasis, highlighting the therapeutic potential of transient HDAC3 inhibition for improving peripheral myelin repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.