Abstract
ABSTRACT Myoglobinuric acute renal failure (MARF) is a structural and functional disorder that occurs in the kidney following the release of muscle cell contents into the circulation. In this present study, possible protective and curative effects of Ferula elaeochytris extract against kidney and liver damage in experimentally induced MARF in a rat model were investigated. 3–4 Month-old, 200–250 g Sprague Dawley rats were divided into 8 equal groups with 7 rats per group. Group I was a no-intervention Control group. All groups except for the Group I were dehydrated for 16 hours. Following this dehydration, 50% v/v aqueous glycerol solution was injected into both hind leg muscles of the animals, at a dose of 8 ml/kg. The rats were given physiological saline (SF) once orally before the model was administered (Group II) and after the model was administered (Group V). Similarly, two different doses of Ferula elaeochytris root extract (40 mg/kg and 80 mg/kg) were dissolved in 2 ml of SF and administered orally before (Groups III and IV) and after (Group VI, VII) the model was created. Following the experimental period, kidney and liver tissues were removed from all groups, and fixed in 10% neutral formaldehyde solution for light microscopic examinations. Intracellular vacuolization, enlargement in the Bowman’s space, widespread atrophy in the tubular structures, luminal enlargement, and desquamation were detected in the kidney tissue sections of all the experimental model groups. In the liver tissue sections, was detected hepatocyte degeneration, intracellular vacuolization, irregularity in cell membrane borders, and apoptotic bodies. These histopathological consequences of MARF were evaluated for all groups, and whereas a curative effect of Ferula elaeochytris could be seen, its protective effect was higher than its curative effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.