Abstract

Zinc is an essential nutrient. Genetic evidence for this nutritional requirement in humans is the zinc deficiency disease, acrodermatitis enteropathica. This disorder is caused by mutations in hZIP4 (SLC39A4), a zinc importer required for zinc uptake in enterocytes and other cell types. Studies in mice have demonstrated that levels of the mZIP4 mRNA are reduced by elevated dietary zinc, resulting in a decreased abundance of the ZIP4 protein at the plasma membrane. Moreover, studies in cultured cells have demonstrated that low micromolar concentrations of zinc stimulate the endocytosis of the mZIP4 protein resulting in a reduction in cellular zinc uptake. In this study, we demonstrate an additional level of hZIP4 regulation involving ubiquitination and degradation of this transporter in elevated zinc concentrations. Mutational analysis identified a cytoplasmic histidine-rich domain that was essential for ubiquitin-dependent degradation of ZIP4 and protection against zinc toxicity. However, this motif was dispensable for zinc-induced endocytosis. These findings indicate that ubiquitin-mediated degradation of the ZIP4 protein is critical for regulating zinc homeostasis in response to the upper tier of physiological zinc concentrations, via a process that is distinct from zinc-stimulated endocytosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.