Abstract

A hindcast simulation of the Arctic and Antarctic sea ice variability during 1955–2001 has been performed with a global, coarse resolution ice–ocean model driven by the National Centers for Environmental Prediction / National Center for Atmospheric Research reanalysis daily surface air temperatures and winds. Both the mean state and variability of the ice packs over the satellite observing period are reasonably well reproduced by the model. Over the 47-year period, the simulated ice area (defined as the total ice-covered oceanic area) in each hemisphere experiences large decadal variability together with a decreasing trend of ~1 % per decade. In the Southern Hemisphere, this trend is mostly caused by an abrupt retreat of the ice cover during the second half of the 1970s and the beginning of the 1980s. The modelled ice volume also exhibits pronounced decadal variability, especially in the Northern Hemisphere. Besides these fluctuations, we detected a downward trend in Arctic ice volume of 1.8 % per decade and an upward trend in Antarctic ice volume of 1.5 % per decade. However, caution must be exercised when interpreting these trends because of the shortness of the simulation and the strong decadal variations. Furthermore, sensitivity experiments have revealed that the trend in Antarctic ice volume is model-dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.