Abstract

Many factors determine target gene expression dynamics under p53 pulsing. In this study, I sought to determine the mechanism by which duration, frequency, binding affinity and maximal transcription rate affect the expression dynamics of target genes. Using an analytical method to solve a simple model, I found that the fold change of target gene expression increases relative to the number of p53 pulses, and the optimal frequency, 0.18 h−1, from two real p53 pulses drives the maximal fold change with a decay rate of 0.18 h−1. Moreover, p53 pulses may also lead to a higher fold change than sustained p53. Finally, I discovered that a Hill‐type equation, including these effect factors, can characterise target gene expression. The average error between the theoretical predictions and experiments was 23%. Collectively, this equation advances the understanding of transcription factor dynamics, where duration and frequency play a significant role in the fine regulation of target gene expression with higher binding affinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call