Abstract

One of the major drawbacks of high-ratio step-up transformers is the high value of their secondary-side capacitor. This value is reflected at the primary side, giving rise to a nondesirable one. There are some converters which include this capacitor in the topology and can cope with it, and even more, they need it. In particular, in high-voltage applications, we will find transformers with a large capacitance value since they use high-ratio step-up transformers. In this kind of applications, it is always interesting not to have inductors at the output filter, with single-capacitor filters being preferred instead. Thus, one of the simplest topologies is the parallel resonant converter (PRC) with a single-capacitor output filter. It can be controlled by the switching frequency and/or duty cycle, which makes zero voltage switching feasible in the power switches. In this paper, the PRC modeling and design and the experimental results are shown in a prototype delivering 3.5 kV and 260 W.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.