Abstract

High-speed atomic force microscope has been a promising tool for dynamic process investigation in the fields such as crystallization, phase change, biological and biophysical events, nanolithography as well as industrial serial production. In the paper, the principle of atomic and friction force microscopic imaging is first described. A high-speed atomic and friction force microscopic imaging system based on a novel optical beam deflection design is then presented in details. Topographic and friction force images of a fluorine-doped tin oxide-coated conductive glass surface taken with the system are given, showing that the system has the high speed imaging capability with a nanometer resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.