Abstract

Methylophiopogonanone B (MOB), one of the homoisoflavonoids isolated from Ophiopogon japonicus, has been demonstrated to possess antioxidative and antitumor activities. The aim of this work was to investigate the metabolism of MOB using liver microsomes and hepatocytes. MOB was individually incubated with rat, monkey, and human hepatocytes to generate the metabolites. To investigate the bioactivation pathways, MOB was incubated with liver microsomes in the presence of glutathione (GSH). All the metabolites were detected and identified using LC with a quadrupole Orbitrap mass spectrometer. Under the current conditions, nine metabolites were identified in hepatocyte incubations. Of these metabolites, M7 derived from hydroxylation was identified as the most abundant metabolite in hepatocyte incubation. MOB was metabolized via demethylation, hydroxylation, and glucuronidation. In liver microsomes, five GSH conjugates were detected and identified. MOB was subjected to bioactivation through demethylation yielding M9, which further formed quinone-methide and ortho-quinone intermediates, followed by GSH conjugation. This work is the first to study the metabolism of MOB, which will help us understand its disposition and efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.