Abstract
Unlike traditional metal-ion insertion, the emerging aqueous rechargeable ammonium-ion batteries (ARABs) brings new battery chemistries for future stationary energy storage. However, low energy density and low durability hinder the further development of ARABs because of the lack of suitable and cost-efficient anodes. In this study, an aqueous rechargeable ammonium zinc hybrid battery is fabricated from durable corner-truncated sodium iron hexacyanoferrate nanocubes as the cathode and low-cost zinc as the anode. This novel hybrid battery demonstrates an average working voltage of 1.3 V, excellent rate capability, and a high energy density of 81.7 Wh kg-1 at 286 W kg-1 (based on two electrodes' active mass), as well as a long lifespan with 92.1 % capacity retention after 2000 cycles, outperforming the reported ARABs and many aqueous hybrid batteries. The strategy to assemble the ammonium zinc hybrid battery provides guidance for improving the feasibility of ARABs for practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.