Abstract

The combination of ultrasound and microreactor is an emerging and promising area, but the report of designing high-power ultrasonic microreactor (USMR) is still limited. This work presents a robust, high-power and highly efficient USMR by directly coupling a microreactor plate with a Langevin-type transducer. The USMR is designed as a longitudinal half wavelength resonator, for which the antinode plane of the highest sound intensity is located at the microreactor. According to one dimension design theory, numerical simulation and impedance analysis, a USMR with a maximum power of 100 W and a resonance frequency of 20 kHz was built. The strong and uniform sound field in the USMR was then applied to intensify gas-liquid mass transfer of slug flow in a microfluidic channel. Non-inertial cavitation with multiple surface wave oscillation was excited on the slug bubbles, enhancing the overall mass transfer coefficient by 3.3-5.7 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.