Abstract
This study proposes a feed-forward controller based on a control system model that can precisely track a reference trajectory by canceling out the effects of parameter uncertainties on a surface-mounted (magnets glued to the shaft surface) permanent magnet synchronous motor. Furthermore, the speed tracking control algorithm demands rapid and accurate q-axis current command, so the feed-forward system based on the control model is used to estimate it. The stability of the proposed controller is mathematically studied. The proposed control scheme is executed on a permanent magnet synchronous motor drive using a Renesas micro-control unit (RX62TADFFM, Japan). Finally, simulation and experimental results are presented to verify that the proposed controller achieves less steady-state error, better robust performance, and faster dynamic response than the proportional–integral controllers in the presence of permanent magnet synchronous motor parameter uncertainties and external load torque disturbance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.