Abstract

Achieving high-performance while reducing power consumption is a key concern as technology scaling is reaching its limits. It is well-accepted that application-specific custom hardware can achieve orders of magnitude improvements in efficiency. The question is whether such efficiency can be maintained while providing enough flexibility to implement a broad class of operations. In this paper, we aim to answer this question for the domain of matrix computations. We propose a design of a novel linear algebra core and demonstrate that it can achieve orders of magnitude improvements in efficiency for matrix-matrix multiplication, an operation that is indicative for a broad class of matrix computations. A feasibility study shows that 47 double- and 104 single-precision GFLOPS/W can be achieved in 19.5 and 15.6 GFLOPS/mm2, respectively with current components and standard 45nm technology.1

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.