Abstract
A high-order compact alternating direction implicit (ADI) method is proposed for solving two-dimensional (2D) parabolic problems with variable coefficients. The computational problem is reduced to sequence one-dimensional problems which makes the computation cost-effective. The method is easily extendable to multi-dimensional problems. Various numerical tests are performed to test its high-order accuracy and efficiency, and to compare it with the standard second-order Peaceman–Rachford ADI method. The method has been applied to obtain the numerical solutions of the lid-driven cavity flow problem governed by the 2D incompressible Navier–Stokes equations using the stream function-vorticity formulation. The solutions obtained agree well with other results in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.