Abstract

This paper presents the design of a SiGe differential cascode power amplifier (PA) to perform the envelope-tracking (ET) along with transistor resizing for efficiency enhancement for the 16QAM LTE. A new parallel-circuit class-E PA model is developed to analyze and design the cascode PA. The analytic results are compared with SPICE simulation and measurement data to provide circuit design insights. Measurement shows the ET-based PA system reaches an overall power-added-efficiency (PAE) of 38% at its 1 dB compression point (P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1dB</sub> ) of 22 dBm for its high power mode. Additionally, at the low power mode, some of the transistor cells can be disabled by the integrated MOSFET switches, and the overall PAE is improved by 4-5% at ≥4 dB back-off from its P <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1dB</sub> . This ET-based cascode PA satisfies the LTE 16QAM linearity specs without needing predistortions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.