Abstract

A 1245-bp endoglucanase gene of glycoside hydrolase (GH) family 7, egl7A, was cloned from the acidothermophilic fungus Talaromyces emersonii CBS394.64 and successfully expressed in Pichia pastoris. Sequence alignments indicated that Egl7A had highest identity of 62.7% at the amino acid level with the functionally characterized endoglucanase from Aspergillus terreus NIH2624. Purified recombinant Egl7A exhibited the maximum activity at pH 4.5 and 70°C, retained stable over the pH range of 2.0–12.0 and at 65°C, and was strongly resistant to acidic and neutral proteases, most metal ions and SDS. The enzyme exhibited the highest specific activity reported so far (11,299Umg−1) when using barley β-glucan as the substrate. Egl7A exhibited broad substrate specificity, including barley β-glucan, lichenin, CMC-Na, and xylan and had capacity to cleave cellopentaose and cellohexaose into smaller units rapidly. Under simulated mashing conditions, addition of Egl7A reduced the mash viscosity by 12.40%; when combined with a GH10 xylanase, more viscosity reduction (27.75%) was observed, which is significantly higher than that of the commercial enzyme Ultraflo XL (17.91%). All these properties make Egl7A attractive for potential applications in the feed and brewing industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call