Abstract

The recently identified lytic polysaccharide monooxygenases (LPMOs) are important auxiliary proteins which contribute to lignocellulose biodegradation by oxidatively cleaving the glycosidic bonds in cellulose and other polysaccharides. The vast differences in terms of substrate specificity and regioselectivity within LPMOs provide us new possibilities to find promising candidates for the use in enzyme cocktails in biorefinery applications. In this study, a highly xyloglucan active family AA9 lytic polysaccharide monooxygenase EpLPMO9A was identified from Eupenicillium parvum 4-14. EpLPMO9A exhibited a mixed C1/C4 oxidative cleavage activity on cellulose and xyloglucan with a broad range of pH stability and good thermal stability at 40 °C. It showed a higher boosting effect on the enzymatic saccharification of complex lignocellulosic substrates associated with xyloglucan than on the lignocellulosic substrates without xyloglucan particularly in low commercial cellulase dosage cases. The oxidative cleavage of xyloglucan by EpLPMO9A may facilitate to open up the sterical hindrance of cellulose by xyloglucan and thereby increase accessibility for cellulase to lignocellulosic substrates. The discovery of more and more hemicellulose-active LPMOs and their contribution to breaking down the barriers by oxidatively acting on hemicellulose may expand our knowledge for their functions of LPMOs in lignocellulose biodegradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call