Abstract

The yttrium organic framework (Y0.89Tb0.10Eu0.01)6(BDC)7(OH)4(H2O)4 (BDC=benzene‐1,4‐dicarboxylate) is hydrothermally stable up to at least 513 K and thermally stable in air in excess of 673 K. The relative intensities of luminescence of Tb3+ and Eu3+ are governed by Tb3+‐to‐Eu3+ phonon‐assisted energy transfer and Tb3+‐to‐ligand back transfer and are responsible for the differing temperature‐dependent luminescence of the two ions. This provides a ratiometric luminescent thermometer in the 288–573 K temperature range, not previously seen for MOF materials, with a high sensitivity, 1.69±0.04 % K−1 at 523 K. In aqueous conditions, loosely bound H2O can be replaced by D2O in the same material, which modifies decay lifetimes to yield a quantitative luminescent D2O sensor with a useful sensitivity for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.