Abstract

Fusion positioning technology requires stable and effective positioning data, but this is often challenging to achieve in complex Non-Line-of-Sight (NLoS) environments. This paper proposes a fusion positioning method that can achieve stable and no hop points by adjusting parameters and predicting trends, even with a one-sided lack of fusion data. The method combines acoustic signal and Inertial Measurement Unit (IMU) data, exploiting their respective advantages. The fusion is achieved using the Kalman filter and Bayesian parameter estimation is performed for tuning IMU parameters and predicting motion trends. The proposed method overcomes the problem of fusion failure caused by long-term unilateral data loss in traditional fusion positioning. The positioning trajectory and error distribution analysis show that the proposed method performs optimally in severe NLoS experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.