Abstract
Identification of the active copper species, and further illustration of the catalytic mechanism of Cu-based catalysts is still a challenge because of the mobility and evolution of Cu0 and Cu+ species in the reaction process. Thus, an unprecedentedly stable Cu-based catalyst was prepared by uniformly embedding Cu nanoparticles in a mesoporous silica shell allowing clarification of the catalytic roles of Cu0 and Cu+ in the dehydrogenation of methanol to methyl formate by combining isotope-labeling experiment, in situ spectroscopy, and DFT calculations. It is shown that Cu0 sites promote the cleavage of the O-H bond in methanol and of the C-H bond in the reaction intermediates CH3 O and H2 COOCH3 which is formed from CH3 O and HCHO, whereas Cu+ sites cause rapid decomposition of formaldehyde generated on the Cu0 sites into CO and H2 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.